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Abstract

In the present paper the heat transfer in a vertical cylinder heated from below has been analysed ^ the in~uence of the
Rayleigh number\ Prandtl number\ aspect ratio and lateral wall thermal boundary condition has been examined in the
range of 0 ¾ A ¾ 4 and 0=09−1 ¾ Pr ¾ 0=094[ The time!dependent ~ow onsets and their fundamental frequencies are
indicated for several low Prandtl numbers "Pr ¾ 4=09−1#[ For Pr × 0=09−0\ no evidence of oscillatory ~ow has been
found in the studied range of parameters[ In order to simulate the lateral walls with thermal boundary conditions
di}erent than the two idealised cases "adiabatic wall and perfectly conducting wall#\ the heat transfer through the solid
wall is included by the simultaneous calculation of both ~uid and solid domain "conjugated heat transfer#[ Þ 0887
Elsevier Science Ltd[ All rights reserved[

Nomenclature

A � H:1R aspect ratio
a discretization coe.cients
C � kfR:kse wall admittance
cp speci_c heat at constant pressure
e wall thickness
F mass ~ow rate
f frequency
f � � fH1:a dimensionless frequency
` gravitational acceleration
H cylinder height
k thermal conductivity
Nu � Ðs"VzT−"1T:1z## ds surface average Nusselt
number
p pressure
Pr � mcp:k Prandtl number
R cylinder radius
r radial coordinate
Ra � gbrH2"Th−Tc#:ma Rayleigh number
Re � rV9R:m Reynolds number

� Corresponding author[

S source term
T temperature
t time
v velocity
z axial coordinate[

Greek
a � k:rcp thermal di}usivity
b thermal expansion coe.cient
G di}usion coe.cient
D distance
m dynamic viscosity
r density
u azimuthal coordinate
f dependent variable[

Subscripts
c cold
cr critical value
f ~uid
h hot
i interface "liquid:solid#
r radial component
s solid
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z axial component
u azimuthal component
9 reference value[
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0[ Introduction

The phenomenon of laminar convection in ~uids
framed in a cylindrical enclosure\ driven by density
di}erence and:or by external force\ often occurs in tech!
nical applications and industrial processes[ The ~uid
motion caused by the phenomenon has a great impact on
the working characteristic of devices and processes where
it occurs[ The problem arises in applications such as ]
tanks for energy or material storage\ electric motor shells\
transparent insulation cells\ etc[ Buoyancy convection
plays an important role in the process of solidi_cation or
crystal growth of semiconductors\ which are the materials
of great importance in modern electronics[ Natural con!
vection phenomenon has a decisive in~uence on creation
of crystal defects and inhomogenities[ As such irregu!
larities reduce material quality\ the goal of the tech!
nological process is to control the convective transport[

The buoyancy driven ~ow in ~uid layer heated from
below\ also known as RayleighÐBe�nard convection\ is
one of the ~uid dynamic topics widely analysed[ One
of the fundamental aspects is the determination of the
convective threshold "Racr# and the in~uence of initial
and boundary conditions on it[ Several contributions
concern the RayleighÐBe�nard problem in cylindrical
enclosure[ The linear stability analysis has been applied
by Gershuni and Zhukhovitskii ð0Ł and Charlson and
Sani ð1Ł in order to _nd the critical Rayleigh number
"Racr# and to describe the ~ow structure\ for the several
system parameters[ These analyses have been made for
perfectly insulated and perfectly conducting lateral wall
"idealised thermal boundary conditions#[ Buell and Cat!
ton ð2Ł used linear stability analysis to _nd the convective
threshold considering an arbitrary thermal conductivity
in the lateral wall[

Experimental observations and measurements of
buoyancy driven motion have been performed by Figliola
ð3Ł for A � 0\ Azouni and Grenet ð4Ł\ Olsaen and Rosen!
berger ð5Ł\ Mu�ller et al[ ð6\ 7Ł and recently by Kamotani
et al[ ð8Ł\ for tall cylinders "A × 0#[ Mu�ller et al[ ð6Ł carried
out the experiments with the cylinders made of three
di}erent materials ] glass\ PMMA and aluminium\ all of
them of A � 4 and _lled with water "Pr ¼ 6#[ The evol!
ution of the spatial structures of the convective motion

with increase of Ra has been described[ The in~uence of
the wall material on Racr has also been discussed[ Mu�ller
et al[ ð7Ł analysed convection in the cylinders with aspect
ratio in range of 9[4 ¾ A ¾ 4 _lled with water "Pr � 5[6#
and melted galium "Pr ¼ 1[09−1#[ They gave the stability
diagrams with the convective threshold and the unsteady
~ow threshold distinguishing the steady\ periodic and
turbulent ranges[ For water the unsteady ~ow appears
for Ra × 29 Racr[

The numerical methods have also been applied in order
to investigate the phenomenon[ Numerical simulation
has been carried out by Crespo et al[ ð09Ð01Ł ^ analysis of
the e}ects of aspect ratio change on spatial ~ow con!
_guration and stability of ~ow solution to initial con!
ditions has been performed in ð09Ł ^ e}ects of Prandtl
number on ~ow patterns have been studied in ð00Ł as
well as the convective threshold and critical aspect ratio
between axisymmetric and asymmetric ~ow mode ð01Ł ^
in those works\ the results are widely compared with data
obtained by linear stability analysis ð0Ð2Ł[ Flow transition
from 1D axisymmetric to 2D asymmetric spatial struc!
ture in ~at cylinder "A � 9[4# and oscillatory convection
regimes have been simulated by Neumann ð02Ł[ A tran!
sition route from steady laminar to turbulent regime for
cylinder of A � 0[4 has been recently presented by Ivanc³ic�
et al[ ð16Ł[ Inclination e}ects on heat transfer in cyl!
indrical cavity are examined by Schneider and Straub
ð03Ł ^ these numerical results are also supported by exper!
imental veri_cation[ In this study a correlation of the
Nusselt number as function of Rayleigh number\ aspect
ratio and inclination angle has been established[

The work of Buell and Catton ð2Ł takes into account
the side!wall thermal boundary condition within the wide
spectra of the two idealised extremes "adiabatic and per!
fectly conducting boundary condition# ^ no other papers\
to the best of the author|s knowledge\ concerning the
cylindrical enclosures analyse systematically this
parameter[ The transition from steady to time!dependent
~ow in cylindrical enclosures is the other topic which
deserves more attention than it has been given up to now[

The principal purpose of this study is to analyse the
in~uence of the aspect ratio\ the Rayleigh number\ the
Prandtl number and the lateral thermal boundary con!
dition on convective heat transfer in vertical cylinders[
For that purpose we developed a three!dimensional\ tran!
sient simulation code which predicts heat transfer and
~ow patterns in cylindrical enclosures with di}erent side!
wall thermal boundary conditions[ In Section 1\ the
physical problem is established and its mathematical for!
mulation is presented ^ in Section 2 some numerical
aspects are explained and the numerical code is validated[
Three aspects of natural convection in a vertical cylinder
are analysed in Section 3 ] the _rst one is the in~uence of
aspect ratio on the convective threshold and heat transfer
in the range of 0¾ A ¾ 4\ the second one is the in~uence
of the Prandtl number in range of 0 = 09−1 ¾ Pr ¾ 0 = 094
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and the last one is the in~uence of the lateral thermal
boundary condition on heat transfer[ The lateral thermal
boundary condition is analysed using solid thermal con!
ductivity values from zero to in_nite\ that is from adia!
batic to perfectly conducting side!wall[ The side!wall
in~uence is parametrized by a wall admittance[ The com!
parison with experimental and theoretical data is carried
out[ The oscillatory ~ow limits and corresponding fun!
damental frequencies are found for the low Prandtl num!
ber ~uids "0 = 09−1 ¾ Pr ¾ 4 = 09−1#[ In Section 4 the main
conclusions are drawn[

1[ Physical model and mathematical description

1[0[ Governin` equations

The phenomenon of laminar ~ow of Newtonian ~uids
in a vertical cylindrical domain\ after introducing the
Boussinesq approximation\ is governed by the mass\
momentum and energy equations ]

9 = vł � 9ł "0#

r
Dvł
Dt

� −9p¦m91vł¦r9 ł̀ð0−b"T−T9#Ł "1#
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The Boussinesq approximation assumes that the density
is constant in all terms except in the buoyancy term in
the momentum equation ^ the other physical properties
of ~uid are taken as constants[

In the cylindrical coordinate system\ the above gov!
erning equations can be casted in the generic form of the
convectionÐdi}usion equation ]
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where f\ G and S are the dependent variable\ the di}usion
coe.cient and the source term respectively[ The meaning
for every particular governing equation is written in
Table 0[

1[1[ Geometry and boundary conditions

The attention is focused on buoyancy driven\ natural
convection in vertical cylindrical vessel of radius R\ wall
thickness e and height H\ heated from below[ The
geometry of the problem is shown in Fig[ 0[ The phenom!
enon arises as a consequence of di}erently heated top
and bottom cylinder bases[ The ~ow _eld and the heat
transfer are determined by the following dimensionless
parameters ] aspect ratio A\ Prandtl number Pr\ wall

admittance C and Rayleigh number Ra " for de_nition
see Nomenclature#[

The set of governing equations "0#Ð"2# is completed by
the following boundary conditions ]

for the momentum equations\ at the solidÐliquid inter!
face\ no slip boundary condition is applied
vr\ vu\ vz � 9 at r � R ^ 9¾ u ¾ 1p and 9 ¾ z ¾ H

at z � 9 ^ 9¾ r ¾ R and 9 ¾ u ¾ 1p

at z � H ^ 9¾ r ¾ R and 9 ¾ u ¾ 1p

"4#
while the thermal boundary conditions are isothermal
horizontal cylinder bases
T"r\ u\ z � 9# � Th

T"r\ u\ z � H# � Tc "5#
and external adiabatic lateral wall
1T
1r br�R¦e

� 9 "6#

The parametrization of the lateral solid wall is
accomplished by means of the wall admittance C\ a
dimensionless number de_ned as ]

C �
kfR
kse

"7#

where kf and ks are the thermal conductivities of ~uid
and wall respectively and e is the wall thickness[ The
idealised extreme cases ] C � 9 for a perfectly conducting
wall and C � � for a perfectly insulating wall can be
modeled using appropriate boundary condition on ~uid
domain without taking into account the solid wall\ while
for the amid cases "9 ³ C ³ �# the model for conjugated
heat transfer is needed[

Even prescribing both the geometry and the boundary
conditions as axisymmetric ones the ~ow may not be
axisymmetric[ The calculations of Buell and Catton ð2Ł
based on the linear stability theory predict a change
between symmetric and asymmetric ~ow _eld on aspect
ratio of Ac � 9[45 for the adiabatic sidewall\ and for
Ac � 9[54 for the perfectly conducting sidewall[ The axi!
symmetric ~ow _elds appear for the values lower than
the Ac\ while the asymmetric ones appear for A × Ac[ In
case of A − Ac the three!dimensional model is necessary
to simulate the ~ow[ The numerical calculations of Cre!
spo et al[ ð01Ł situate the ~ow mode interchange near
Ac � 9[514 for the perfectly conducting sidewall[
However\ the ~ow _eld for the aspect ratio range chosen
in this study "0¾ A ¾ 4# is strongly asymmetric and thus
three!dimensional[

2[ Numerical aspects

2[0[ Discretization

A grid is generated in the polarÐcylindrical coordinate
system to cover the domain of interest ^ a typical control
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Table 0
Dependent variables\ di}usion coe.cients and source terms

Equation F G S

Mass 0 9 9
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Energy T l:cp 9

Fig[ 0[ Scheme of the analysed geometry along with the thermal
boundary conditions[

volume "CV# is shown in Fig[ 1a[ The common con!
vectionÐdi}usion equation is integrated over this CV and
each term in the resulting integral balance is approxi!
mated in terms of the discrete values of f in the nodal
points[ In order to avoid the well known checkerboard
problem\ the momentum equations are discretized over
a staggered grid arrangement "Fig[ 2#[ The algebraic
equations obtained after discretization get the standard
linearized form "see e[g[\ ð08Ł ]

apfp � s
nb�I\O\C\A\T\B

anbfnb¦S "8#

where a are the discretization coe.cients "subindexes
meaning location ] I*inner\ O*outer\ C*clockwise\
A*anticlockwise\ T*top\ B*bottom#\ S is a source
term and f represents discrete values of the dependent
variable concerning the corresponding CV[

The particularity of polarÐcylindrical coordinate sys!
tem is that its origin in general does not coincide with a
physical boundary[ The di}erential equation describing
transport phenomena "equation 3# includes terms like
"0:r# and "1:1r# that become singular at the origin of
the radial coordinate ^ this leads to some computational
di.culties[ The problem is avoided if boundary con!
ditions can be prescribed at the axis ^ either speci_ed
variables or its derivatives "in case of any kind of sym!
metry*axial\ plane or antisymmetry# is su.cient to pre!
vent the mentioned di.culty[ Vahl Davis ð04Ł comments
on the problem for arbitrary boundary conditions\
suggesting generating the mesh without nodes at the axis\
i[e[\ the computational domain is extended up to a thin
cylinder around the z axis\ and to approximate radial
derivatives for the _rst inner point by a second order
forward di}erencing formula[ After Vahl Davis\ the
omitting of a su.ciently small part of the domain does
not in~uence on the calculation accuracy[ This method
has been widely used "Crespo et al[ ð09Ð01Ł\ Leong and
Vahl Davis ð05Ł\ Bontoux et al[ ð06Ł#[ In literature other
proposals exist about the singularity treatment as one by
Schneider and Straub ð03Ł who introduced a cylinder!
shape CV near the axis[ Alternative choice may be the
use of nonstructured grids or so!called Chimera grids[

In the present study a di}erent approach has been
adopted[ Firstly\ the grid is generated up to the axis[
The di}erential equations for the vu\ vz and the scalar
quantities are discretized in the same manner for all the
CV of the computational domain ^ the CVs at the axis
are treated in the same way taking into account that inner
face area is equal to zero[ The radial velocity component
"vr# is calculated in staggered CVs in the radial direction[
As a consequence the center remains uncovered for vr

equation[ To prevent that\ an additional CV in the radial
momentum equation is included to ensure information
about vr for the _rst {regular| CV[ In this way the whole
calculation domain remains covered[ The additional CV
is located in just one pressure CV\ that means that there
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Fig[ 1[ "a# Typical control volume un the cylindrical system ^ "b# _rst control volume in the cylindrical coordinate system[

Fig[ 2[ Grid arrangement in the cylindrical coordinate system[

is no pressure gradient in it "1p:1r � 9#[ The basic advan!
tage of the present treatment is its simplicity which
involves very few additional steps in the numerical code
without signi_cant penalising of the CPU time[

Some addends of the source terms obtained after dis!
cretization of momentum equations are nonlinear "see
Table 0# ^ these terms require linearization to ensure
numerical stability[ The linearization has been done in
the standard form ]

S � Sc¦SPfP "09#

In order to enhance convergence and avoid numerical
instability\ the Sc and Sp terms are evaluated in this way ]

Sc � max"NLT\ 9#f9
P Sp � min"NLT\ 9# "00#

where NLT are the f!dependent source term addends
and f9

p is the nodal value of f at the previous iteration[
The calculation procedure follows the SIMPLEC ð07Ł

algorithm along with a fully implicit method ^ time deriva!
tives are approximated using a _rst order backward Euler

scheme[ The system of linear algebraic equations is solved
using the TDMA ð08Ł and occasionally the MSIP ð19Ł ^
both solvers are arranged for cyclic conditions in u direc!
tion[ As a convergence criteria the mass source term "S
in the continuity equation# has been used\ requiring to
be less than 09−7 in every CV[ The di}usion term is
calculated by the central di}erence scheme[ Di}erent dis!
cretization schemes have been used to approximate the
convective terms ] _rst order upwind "FOU#\ PLDS ð08Ł\
second order central di}erence "CDS#\ QUICK ð10Ł\
SMART ð11Ł\ MUSCL ð20Ł\ SOUCUP ð21Ł[ When a
higher order "h[o[# accuracy numerical schemes "CDS\
QUICK\ SMART\ MUSCL\ SOUCUP# are used for the
convective term\ upwind di}erencing is applied as a _rst
step and the additional value is summed up to the source
term and calculated in a deferred way as proposed by
Khosla and Rubin ð18Ł ]

Ff � FfFOU¦ F"fh[o[−fo\FOU#
zxxxxcxxxxv

source

"01#
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The advantage of this kind of numerical treatment is
two!fold ] _rstly\ the numerical stability of the code is
improved\ and secondly\ when the 02!point com!
putational molecule is applied\ the matrix structure is the
same as for a 6!point computational molecule that allows
the use of the same solver for linear equation system for
all the discretization schemes applied[ In this way\ the
usual structure of pressure!correction type codes is pre!
served without necessity of rewriting any part of the code
except the new source addend[

When the heat transfer in the solid lateral wall is taken
into account\ the calculation for ~uid and solid parts is
made simultaneously for the whole domain[ As for the
solid region\ only the energy equation is needed] the
matrix corresponding to that equation is simply extended
to cover the solid part of calculation domain[ The thermal
conductivity on the interface solid:~uid is deduced equa!
ting the thermal conductances for a multi!layer cylinder
"kf\ ks# with the thermal conductance for a single!layer
cylinder "k¹# ]

k¹ �
ln

rs

rf

0
kf

ln
ri

rf

¦
0
ks

ln
rs

ri

"02#

where k¹ is the average thermal conductivity\ kf and ks are
thermal conductivities of the ~uid and solid wall respec!
tively\ and ri\ rf and rs are the radii shown in Fig[ 3[

2[1[ Validation of the space discretization

In order to check the behavior of the arrangement
introduced in the vicinity of the axis\ two tests have been
performed[ With these tests the intention is to check only
the approach introduced for treatment of the CVs near
the axis in the polar!cylindrical coordinate system\ hence
the test has been carried out in 1D\ in rÐu plane[ We
consider these tests specially suitable for the validation

Fig[ 3[ SolidÐliquid boundary[

because the exact solution of the problems is known[
Besides these tests\ other cases are used for validation of
the code\ but due to space limitation we expose just what
we consider most interesting for the particular treatment
introduced for the polar!cylindrical coordinates[

As a _rst test\ the benchmark case proposed by Smith
and Hutton ð29Ł has been performed "Fig[ 4#[ This prob!
lem is widely used for the numerical schemes and codes
testing[ The test consists in solving the scalar "e[g[ tem!
perature# _eld in the domain with the known velocity
_eld[ For the particular case of di}usion!free ~ow "G � 9#
the analytical solution of the scalar _eld is known[

In the original form\ in ð29Ł\ the problem is established
in the Cartesian coordinates considering a rectangular
domain ] −0 ¾ x ¾ 0\ 9 ¾ y ¾ 0\ where the velocity _eld
is given by ]

vx � 1y"0−x1# ^ vy � −1x"0−y1# "03#

and the temperature pro_le on the inlet "−0¾ x ¾ 9\
y � 9# is given as a step transition form 9 to 1 ]

Tin � 0¦tanh ðs"0¦1x#Ł "04#

where s is the transition steepness parameter ^ in the
present study a value of s � 099 is used representing a
very sharp transition[ For di}usion!free case "G � �#
the temperature _eld is solved analytically giving ]

T"x\ y# � 0¦tanhðs"0−1z0−"0−x1#"0−y1# "05#

For the testing in the polarÐcylindrical coordinates\ the
middle part of the rectangular domain is selected\ as
shown in Fig[ 4[ After coordinates transformation\ the
velocity _eld and the temperature boundary condition
are speci_ed for the cylindrical domain[

The calculated temperature pro_les are compared with
the analytical solution in the section x � 9 marked as AÐ
A in Fig[ 4[ The test has been carried out with _ve di}er!
ent numerical schemes ] FOU\ QUICK\ SMART\
SOUCUP and MUSCL\ and on _ve grids ] 09×19\
09×39\ 04×39\ 19×39 and 19×59 in r\ u direction[
Figure 5 shows the results obtained by the di}erent
numerical schemes on 09×19 grid[ The FOU scheme
exhibits smoothed temperature pro_le due to false
di}usion\ the typical problem of the _rst!order schemes\
while all the other\ higher order schemes are noticeably
sharper[ The QUICK scheme shows very sharp tem!
perature pro_le but with spatial oscillations[ The best
results are achieved by the SMART numerical scheme[
The grid dependent solutions for the FOU and SMART
schemes are shown in Fig[ 6[ The important conclusion
is that the temperature pro_le remains smooth and undis!
turbed near the coordinate center[ This means that the
approach introduced to treat the coordinate center do
not a}ect the solution of the temperature pro_le[

Test 1 corresponds to a uniform stream ~ow "Fig[ 7#[
The boundary conditions for this unidimensional parallel
~ow in the polarÐcylindrical coordinate system are given
as ]
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Fig[ 4[ Test 0 ] streamline pattern and inlet temperature pro_le[

Fig[ 5[ Test 0 ] temperature pro_les calculated by di}erent numerical schemes on a grid 09×19[
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Fig[ 6[ Test 0 ] temperature pro_les calculated by di}erent grids using "a# FOU scheme and "b# SMART scheme[
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Fig[ 7[ Test 1 ] uniform stream ~ow ^ velocity _eld obtained by
CDS numerical scheme on 09×19 CV grid[

vr"r � R\ u# � v cos u ^ vu"r � R\ u# � −v sin u "06#

The test has been done with four di}erent grids ] 09×19\
05×21\ 19×39 and 29×59 CVs in r and u directions[ In
Fig[ 8\ the velocity pro_les for Vr"u � 9\ p# and
Vu"u � p:1\ 2p:1# are shown ^ the absolute values of Vr

are presented rather than relative because of the change

Fig[ 8[ Test 1 ] velocity pro_les for Vr"u � 9\ p# and Vu"u � p:1\ 2p:1# obtained by di}erent numerical schemes on a grid of 09×19[

of sign at the origin[ The comparison in that _gure is
made between the exact solution and the numerical solu!
tion on 09×19 CV grid[ A certain velocity deviation near
the center has been observed[ The results obtained by the
FOU scheme achieves the biggest deviation*08) with
respect to exact solution "exact solution is represented by
horizontal solid line#[ The PLDS gives better results "5)
deviation#[ The second and higher order schemes allow
results with deviation up to 0[4) for the 09×19 grid[
Figure 09 represents the in~uence of the grid re_nement
on the relative error[ Re_ning the discretization grid\
the relative error decreases[ The error in the direction
perpendicular on the ~ow "Vu"u � p:1\ 2p:1## is more
pronounced[

The results of both tests draw well the expected tem!
perature and ~ow patterns using at least second order
numerical schemes ^ PLDS and FOU are not a good
choice for the arrangement applied[ The results presented
in the following sections have been carried out using
the CDS numerical scheme\ except the simulation of the
oscillatory ~ows "Section 3[3# which has been performed
by the SMART numerical scheme[

3[ Numerical results

3[0[ In~uence of the `rid

The in~uence of grid re_nement on heat transfer has
been examined[ The Nusselt number values have been
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Fig[ 09[ Test 1 ] maximum relative error vs number of control volumes[

compared for four di}erent uniform grids "4×09×09 ^
09×19×19 ^ 04×29×29 ^ 19×25×25 in r\ u\ z direction#
in the range of Racr ³ Ra ³ 1Racr for a cylinder of aspect
ratio A � 0 and Pr � 0[ No qualitative di}erence in the
spatial ~ow structure obtained by di}erent grids has been
observed\ but certain discrepancy in quantitative sense
exists[ Re_ning the grid results\ in general\ in a smaller
maximum velocity and somewhat lower Nusselt number[
Discrepancy in Nu increases for higher Ra[ For the high!
est Rayleigh number tested\ Ra � 0 = 093 there is a di}er!
ence of 8[2) for Nu"4×09×09#\ 1[3) for Nu"09×19×19# and
9[4) for Nu"04×29×29# with respect to Nu"19×25×25# "Fig[
00#[ In general\ the data presented in this paper were
calculated with a grid of 09×19×19 control volumes in
r\ u\ z direction\ which does not completely o}er grid
independent solution but it was considered as a good
compromise between accuracy and CPU time[ When the
solid wall is introduced\ a grid of "09¦0#×19×19 has
been used[

3[1[ Convective threshold

The convective motion starts when the Rayleigh num!
ber exceeds a critical value[ For Ra ³ Racr no motion
occurs[ Strati_ed disposition in ~uid body exists and heat
transfer is leaded only by di}usion "Nu � 0#[ For a hori!
zontal in_nite layer\ convective onset takes place for
Racr � 0696[6 ð12Ł[ When the ~uid is bounded the con!
vective onset is displaced toward a higher Ra value due to
the stabilising e}ect of the sidewall[ The critical Rayleigh
number depends both on the boundary conditions and
the geometry and not on the physical properties of the

~uid\ hence the critical value Racr does not depend on the
Prandtl number "except for the limited case Pr : 9\ see
ð14Ł#[ In the examined range of the aspect ratio\ the _rst
convective motion corresponds to a helical single!roll\
which appears as a single vortex in the vertical symmetry
plane\ and in its orthogonal plane there are four equal
vortices\ each one occupying one quarter of the section
"Fig[ 01#[ Between these two planes there are sections
with a main roll and two smaller secondary counter!rolls
in the corners[ With the increasing of Ra the main vortex
inclinates and later\ at Ra − 4 Racr for water\ according
to experimental data by Mu�ller et al[ ð7Ł\ two secondary
vortices also appear in opposite corners of the vertical
symmetry plane[ Sometimes it is convenient to analyse
and to discuss about characteristic sections\ i[e[ vertical
symmetry and orthogonal planes\ due to the spatial com!
plexity of the convection motion[ These planes appear in
arbitrary position in the cylinder\ they are not con!
ditioned by the numerical algorithm ^ furthermore they
are introduced in the subsequent analysis of the results
of the calculation[ However\ one should keep in mind
the spatial structure of the ~ow ^ Figs 02AÐC show the
characteristic trajectories in order to make clear the three!
dimensional ~uid movement inside the cylinder[ The par!
ticles make outward spiral motion near the vertical sym!
metry plane\ then leave that plane and later follow helical
paths going back toward the symmetry plane[ While heli!
cal movement occurs\ the radius of circulation decreases
"Figs 02A and C#[ It is interesting to note that the
described trajectories are\ in a certain way\ similar to the
ones presented by Kessler ð13Ł for natural convection in
rectangular boxes[
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Fig[ 00[ Average Nusselt number vs Rayleigh number for four di}erent grids ] 4×09×09\ 09×19×19\ 04×29×29 and 19×25×25 ^
A � 0\ Pr � 0[

In the whole range of parameters\ where the steady
convection is predicted by the numerical code\ no depen!
dence on initial conditions or ~ow history has been
observed ^ for the determined set of parameters one single
stable solution exists[ This is in accordance with linear
stability theory that predicts only one stable solution in
the chosen range of parameters[

The Nusselt number has been used as a criteria looking
for the critical Ra value\ if Ra ¾ Racr then Nu � 0[ The
searching for Racr starts with the calculation for slightly
supercritical Ra "about 0[1Racr after Buell and Catton
ð2Ł#[ When the converged solution is obtained the con!
dition "Nu−0# ³ 0 = 09−4 is checked[ If this condition is
not satis_ed\ the Rayleigh number is decreased and the
calculation is repeated using the previous solution as the
initial guess[ The process of gradual decreasing of the
Rayleigh number is repeated until the above mentioned
condition is satis_ed[ All the Nusselt numbers stated in
this paper "see Nomenclature# are checked in three
di}erent cross!sections ] on the bottom "z � 9#\ at the
middle plane "z � H:1# and on the top "z � H#[ The
di}erence found between them has been of the order of
O ½"09−5# or less[

The numerical data are in good agreement with exper!
imental data and with the results based on linear stability
theory found in the literature "Fig[ 03#[ The best coinci!
dence is found with the results of Buell and Catton ð2Ł
"discrepancy up to 3)#[ The results of Charlson and Sani
ð1Ł agree well for high aspect ration but near A � 0 the
discrepancy comes up to 05) ^ this may be explained by

the choice of the trial function for asymmetric modes\
made in ð1Ł[ After Buell and Catton ð2Ł the function used
by Charlson and Sani ð1Ł causes the azimuthal com!
ponent to be zero in the axis what is inadequate for the
asymmetric modes " for more details see ð2Ł#[ The taller
the cylinder is the weaker the azimuthal component is\
thus the smaller the discrepancy[ Our numerical results
_t well with the experimental data of Olsen and Rosen!
berger ð5Ł and Mu�ller and Neumann ð7Ł[

Figure 04 shows the numerical data of the Nusselt
number\ obtained for a Pr � 0 and a perfectly insulated
lateral wall\ for di}erent aspect ratios[ Not only ~ow
stability is conditioned by the aspect ratio\ but also the
increase of Nu number value is a}ected[ The resulting
values from a correlation created by Schneider and
Straub ð03Ł are plotted in the same _gure ^ the correlation\
restricted to a vertical cylinder\ can be written as ]

Nu � 0¦9[212A8:30
A−9[0

9[8 1
−0:1

¦9[31$0
Ra

A21
0:3

−49990:3% "07#

For A � 0 the correlation agrees well\ within 4)\ with
our numerical results up to Ra � 3 = 093 ^ after this value
discrepancy becomes important[ For A � 1\ which is a
limiting value of the correlation validity\ a signi_cant
di}erence exists in the whole range of Ra[ To check our
results we repeat the calculation for a few Ra values
re_ning the grid by a factor of 7[ The supplemental results
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Fig[ 01[ Isotherms and velocities for A � 0\ Ra � 0 = 093 ^ "a# and "b# Pr � 0\ spatial view with symmetry and orthogonal sections ^ "c#
Pr � 0\ symmetry plane ^ "d# Pr � 0\ orthogonal plane ^ "e# Pr � 0 = 09−1\ symmetry plane ^ " f# Pr � 0 = 09−1\ orthogonal plane "the
surface color in accordance with temperature ^ the arrow color in accordance with intensity of velocity vector#[
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Fig[ 02[ Typical trajectories for A � 0\ Pr � 0\ Ra � 0 = 093 ^ "a# view from the symmetry plane ^ "b# view from the orthogonal plane ^
"c# view from the upper side ^ "the color in accordance with intensity of velocity vector#[

are in accordance with the previous within 2)[ The rea!
son for the discrepancy between the present results and
the ones obtained by the correlation "07# lies in two facts ]
one is that the correlation is based on the results obtained

on a much coarser grid "grids of 3×7×5 and 6×09×09
are stated by Schneider and Straub in ð03Ł# and another
is the use of the hybrid numerical scheme in ref[ 03\ which
is essentially _rst order accurate[
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Fig[ 03[ Critical Rayleigh number vs aspect ratio\ stability limit curves for adiabatic and perfectly conducting wall ^ comparison with
other authors ] GZ ð0Ł\ CS ð1Ł\ BC ð2Ł*linear stability theory\ OR ð5Ł\ MN ð6Ł\ MNW ð7Ł\ KWOP ð8Ł*experimental[

Fig[ 04[ Average Nusselt number vs aspect ratio ^ correlation from ref[ 03 also depicted[
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3[2[ In~uence of Prandtl number

The Prandtl number in~uence on heat transfer has
been analysed in cylinders of aspect ratio equal to 0[ The
onset of the _rst convective instability does not depend
on the Prandtl number\ but once the motion is estab!
lished\ there is a di}erence in the ~ow patterns and Nus!
selt number[ For Pr − 9[4 the in~uence of Prandtl num!
ber on heat transfer is minor ^ in that range of Pr number\
the role of convection is decisive while di}usion has no
great importance[ To make the distinction between the
curves for Pr � 0\ 09\ 0 = 092 and 0 = 094 visible a part of
Fig[ 05 is magni_ed ^ even in this way the di}erence for
Pr � 0 = 092 and 0 = 094 is indistinguishable[ In general\
the di}erence in Nu becomes smaller for high Rayleigh
numbers "Fig[ 05#[ The in~uence of convection on the
heat transfer greatly decreases for Pr ³ 9[4\ and thermal
di}usion becomes the dominant e}ect[ In Figs 01CÐF\
the isothermal surfaces are plotted for Pr � 0 and 0 = 09−1

respectively[ The temperature pro_le for the low Prandtl
number ~uid is almost strati_ed because it is established
mainly by di}usion and the isotherms remain less a}ected
by the convection motion[

Appearance of the secondary vortices in the vertical
symmetry plane depends on the ~uid Prandtl number ]
for lower Pr ~uid vortices come out with smaller Ra[ The
presence of secondary rolls is indicated in Fig[ 05[ In the
experimental work of Mu�ller et al[ ð7Ł this occurs at

Fig[ 05[ Average Nusselt number vs Rayleigh number for various Pr ^ A � 0\ adiabatic sidewall[ For Pr ¾ 9[94 oscillatory ~ow limit is
denoted[ Appearance of secondary vortices in the symmetry plane is also indicated "e#[

Ra − 4Racr for water "Pr � 5[6#\ which matches well with
our numerical prediction[

The validity of the correlation "07# in its original form
ð03Ł\ including inclined cylinders\ has been limited to
~uids with Pr − 9[6[ Figure 05 suggests that for vertical
cylinders of A � 0\ as a particular case\ the application
of the correlation may be extended to gases in general
"the Prandtl number for gases Pr − 9[4#[ The di}erence
between Nusselt numbers for Pr � 0 and Pr � 9[4 is less
than 1) for Ra ¾ 0 = 093 and less than 0) for the range
0 = 093 ³ Ra ³ 4 = 093[ Obviously\ the liquid metals
"Pr ¾ 9[94# do not obey the same law[ Figure 06 shows
plots of Nusselt number vs Prandtl for various Ra[ The
Nusselt number shows an asymptotic trend with an
increase of the Pr[

The other important aspect of Prandtl number in~u!
ence on ~ow structure is the oscillatory ~ow instability\
which is considered in the next section[

3[3[ Oscillatory ~ow

When the Rayleigh number is increased to reach a
certain value "Raosc#\ the phenomenon becomes time!
dependent[ Over this limit the ~ow can be laminar "per!
iodic or quasiperiodic# or turbulent[ There are several
possible scenarios of transition from steady state to tur!
bulence ^ a good review of this topic is given by Yang
ð14Ł[
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Fig[ 06[ Average Nusselt number vs Prandtl number for various Ra ^ oscillatory ~ow limit ^ A � 0\ adiabatic sidewall[

The transition to time!dependent ~ow in vertical cyl!
inders is a}ected by the aspect ratio\ the Prandtl number
and the lateral wall thermal boundary condition[ In order
to _nd the oscillatory limit\ the Rayleigh number has been
increased gradually\ in steps of 0 = 092[ As the numerical
calculation produces unavoidable round!o} error it has
been considered that this error is enough to provoke
oscillatory ~ow ^ no other disturbance has been intro!
duced[

In the previous papers by Ivanc³ic� et al[ ð16\ 17Ł\ the
results for A � 0[4 and 1\ for Pr � 0 = 09−1 were
presented[ The frequencies found for A � 1 were in excel!
lent agreement with the experiments of Kamotani et al[
ð8Ł\ the discrepancy was within the measurement error
estimated in ð8Ł[ For A � 0[4 we have no experimental
data\ but it may be concluded that the frequencies
founded are of the same order of magnitude as these
presented by Kamatoni et al[ for aspect ratios A � 1
and 2[ For the both aspect ratios the laminarÐturbulent
transition route is identi_ed as the quasiperiodic one ð16\
17Ł[

In the present study the aspect ratio and the lateral
wall boundary condition are _xed "A � 0#\ adiabatic
boundary condition and the analysis is concentrated on
the Prandtl number in~uence on the time!dependent con!
vection phenomenon[ The calculation has been carried
out for 0 = 09−1 ¾ Pr ¾ 0 = 09−0[ For the low Prandtl num!
ber ~uids\ the inertial forces play a dominant role\ while
the buoyancy forces\ induced by the temperature bound!
ary conditions\ are less important ^ with the increase of

Pr\ inertial forces become less and less in~uent[ Oscil!
latory phenomenon in low Prandtl number ~ows comes
out due to inertial e}ects ] the lower the Pr number is\
the more sensitive the ~uid is to oscillatory onset i[e[
onset occurs for the lower Rayleigh number[ The oscil!
latory ~ow limit "Raosc# increases with the increasing of
the Prandtl number ^ it is depicted in Figs 05 and 06[
The oscillatory instability for Pr � 0 = 09−1 begins near
Raosc � 0[2 = 093 and for Pr � 4 = 09−1 near Raosc � 2 = 093[
The fundamental frequency of the periodic ~ow grows
with the rise of the Prandtl number[ Indications of oscil!
latory ~ow have not been found for Pr − 9[0\ in the
studied range of the Rayleigh number[

The dynamic behavior of time!dependent ~ow has been
examined using the power spectra[ The same frequencies
have been found in all nodes which means that the move!
ment in the whole cylinder is synchronized[ The mean
Nusselt number on the hot and cold bases are in opposite
phase[ The biggest amplitudes are detected near the side!
wall\ in the top and bottom of the cavity "in the cavity
corners#[ As can be seen in Fig[ 07\ the frequency of
oscillations shows a weak dependence on the Rayleigh
number in the range 0[6 = 093 ¾ Ra ¾ 0[7 = 093 ^ it increases
the growth of the Ra[

Certain in~uence of time step on frequency has been
observed[ The frequencies for three runs with di}erent
times steps are presented in Table 1 "Pr � 1 = 09−1\
Ra � 0[6 = 093#[ The frequency increases when the time
step is shortened[ The other outstanding e}ect of dec!
rementing the time step is the presence of a new important
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Fig[ 07[ Dimensionless fundamental frequency vs Rayleigh number ^ Pr � 1 = 09−1[

Table 1
Dimensionless frequency vs dimensionless time step for
Ra � 0[6 = 093 and Ra � 0[7 = 093\ Pr � 1 = 09−1 ^ the frequencies
are made dimensionless multiplying by H1:a

t 9[0 9[94 9[90
t� 0[72=09−2 8[04=09−3 0[72 = 09−3

Ra � 0[6 = 093 f� 9[342 9[363 9[364
Ra � 0[7 = 093 f� * 9[389 9[491

harmonic of the fundamental frequency which has been
omitted in the simulation with the longer time step[

3[4[ In~uence of the lateral wall thermal boundary
condition

The results obtained by the numerical code for con!
jugated heat transfer problem were _rst contrasted with
experimental data ð7Ł and linear stability theory pre!
dictions ð2Ł comparing the critical Rayleigh number for
di}erent wall admittances[ Afterwards the analysis for
aspect ratios A � 0 and A � 1 has been accomplished[

The in~uence of the solid wall thickness and its thermal
conductivity is treated by means of the wall admittance C\
a dimensionless parameter de_ned above[ The idealised
extremes "C � 9 for a perfectly conducting wall and
C � � for a perfectly insulating wall# can be calculated
imposing suitable boundary condition on ~uid domain

without taking into account the solid wall[ To analyse
the situations in between these two extremes the thermal
conduction through the solid wall must be involved in
calculation[

Figure 08 shows the critical Rayleigh number vs aspect
ratio for di}erent C[ The simulation of the ~ow inside
the cylinder of wall admittance C � 0 and C � 09 gives
somewhat lower values of critical Rayleigh number than
those presented in ð2Ł "Fig[ 08#[ For A � 0 the convective
threshold is found to occur for a Ra 09Ð04) smaller[
For A � 4 the numerical results are in good agreement
with experimental data measured by Mu�ller and Neu!
mann ð6Ł\ while considerable disagreement with the linear
stability theory predictions by Buell and Catton exists[
The experimental results of Cane et al[ ð15Ł for a tall
cavity with square and hexagonal base and C � 09 are
also depicted ^ the results correspond to the geometry
with the same hydraulic diameter as the numerical results
presented for the cylinder[ The fact that the critical Ra
values for these three geometries are very similar\ all the
results within 5) of di}erence\ shows that the geometry
of the cavity base is a factor of minor in~uence on con!
vective onset in high aspect ratio cavities[

The structure of the _rst convective motion that
appears is independent on wall admittance\ in the studied
range of aspect ratio\ and corresponds to the motion
described above "Fig[ 02#[ The conduction through the
lateral wall gives additional stability to the ~uid layer[
The critical Rayleigh number is 1Ð2 times higher for
C � 9 than that found for C � �[
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Fig[ 08[ Critical Rayleigh number vs aspect ratio\ stability limit curves for C � 0 and C � 09 ^ comparison with data from ] BC ð2Ł*
linear stability theory\ MN ð6Ł*experimental\ CHRU ð15Ł*experimental for the square and hexagonal cavities for C � 09[

In Figs 19 and 10 the Nusselt number vs the Rayleigh
number for two aspect ratios "A � 0 and A � 1 respec!
tively# are given[ When the Rayleigh number is increased\
secondary vortices in the symmetry plane appear _rst

Fig[ 19[ Average Nusselt number vs Rayleigh number for various C ^ Pr � 0\ A � 0 ^ appearance of secondary vortices in the symmetry
plane also indicated "e#[

for perfectly conducting sidewall\ at very low Rayleigh
number "Ra ¼ 0[0Racr#[ For less conductive sidewall\
vortices come out for higher Ra and develop slower with
an increase of the Ra than these for C � 9[ The lower
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Fig[ 10[ Average Nusselt number vs Rayleigh number for various C ^ Pr � 0\ A � 1 ^ appearance of secondary vortices in the symmetry
plane also indicated "e#[

wall admittance increases ~uid stability with respect to
the _rst convective motion[ Interestingly\ once the motion
is established\ the conducting wall thermal e}ect
increments the growth of the Nusselt number with the rise
of Ra "Fig[ 19#[ The Nusselt number for more conducting
lateral wall then exceeds the one resulting from adiabatic
boundary condition[ This can be explained by the con!
ducting wall thermal e}ects that introduce additional
buoyancy near the cylinder bases[ As a consequence\
more developed secondary vortices are present in the
symmetry plane[

For the unit aspect ratio\ the crosspoint of curves
Nu"Ra# regarding C � 9 and C � � takes place at
Ra ¼ 5[8 = 093[ When Ra ³ 5[8 = 093 heat transfer is more
intensive for the adiabatic wall con_guration\ on the
other hand for Ra × 5[8 = 093 conducting wall con!
_guration provokes higher Nu[ The maximum velocity
for C � 9 con_guration becomes greater than the
maximum value for C � � near Ra ¼ 4[4 = 093[ The ~ow
in a cavity with A � 1 exhibits a similar trend but the
crosspoint of Nu"Ra# curves has not been achieved in the
range of Ra studied here "Fig[ 10#[

4[ Conclusions

The purpose of the present work has been to study the
e}ects of the Rayleigh number\ Prandtl number\ aspect
ratio and lateral wall thermal boundary condition on the

laminar natural convection in a vertical cylinder heated
from below[

The treatment of the NavierÐStokes equations written
in cylindrical coordinates has been given for cases when
the physical boundary does not agree with the coordinate
origin "r � 9#[ The numerical code has been validated for
two test situations giving satisfactory results[ The chosen
approach shows good numerical stability and o}ers
results that\ in general\ agree closely with the exper!
imental data and the linear stability theory predictions[
It has been shown that the selected grid is su.cient for
qualitative analysis of the phenomenon even if the grid
independent solution has not been achieved[

For steady convection no dependence of ~ow structure
and Nu on ~ow history has been observed\ which is in
accordance with linear stability theory that predicts only
one stable solution in the chosen range of parameters[

The study of Prandtl number e}ect on heat transfer
shows that for most technical applications the in~uence
of Prandtl number for Pr − 9[4 could be neglected[ For
Pr ³ 9[0 the Nusselt number exhibits di}erent behaviour
depending strongly on Pr[

For low Prandtl number ~uids\ the time!dependent
~ow has been detected ^ this kind of oscillations is a conse!
quence of the inertial e}ects[ As Pr increases\ the oscil!
lation onset arises for higher Ra and with higher fun!
damental frequency[ In general\ oscillations are more
pronounced in the cavity corners[

The critical Rayleigh number depends on the lateral
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thermal boundary condition\ i[e[ physical properties of
sidewall material and its geometry\ but the structure of
the _rst convective motion does not[

The in~uence of lateral wall thermal boundary con!
ditions on Nusselt number has also been analysed[ It may
be a very signi_cant factor in heat transfer because the
lateral wall conduction can increase or decrease the heat
~ux through the ~uid layer and the maximum velocity in
it ^ it depends on Ra[ After Racr\ C � � case gives higher
Nu\ but afterwards the velocities increase more rapidly
for C � 9 and\ consequently\ Nu for that con_guration
becomes higher[

Future work will be aimed to extend the analysis the
wider range of parameter space "A and C# and thereafter
to correlate the obtained results[
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